

DPP No. 32

Total Marks : 29

Max. Time : 31 min.

R www.studentbro.in

Topics : Method of Differentiation, Complex Number, Continuity & Derivability, Application of Derivatives, Sequence & Series, Function

| Type o<br>Single<br>Multip<br>Subjec | of Questions<br>choice Objective (no<br>le choice objective (no<br>ctive Questions (no n                                                                                                          | o negative marking) (<br>no negative marking)<br>legative marking) Q.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q.1,2,3,4<br>Q.5<br>5,7,8                      | (3 marks<br>(5 marks<br>(4 marks, | s, 3 min.)<br>s, 4 min.)<br>5 min.)       | M.M.,<br>[12,<br>[5,<br>[12, | Min.<br>12]<br>4]<br>15] |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------|-------------------------------------------|------------------------------|--------------------------|
| 1.                                   | Let $y = \tan^{-1}\left(\frac{2\cos(3x^2-2)+5\sin(3x^2-2)}{5\cos(3x^2-2)-2\sin(3x^2-2)}\right)$ , then $\frac{dy}{dx} =$                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                                   |                                           |                              |                          |
|                                      | (A) 6x – 2                                                                                                                                                                                        | (B) 6x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (C) 5x                                         |                                   | (D) $\frac{6x}{x^2 + 1}$                  |                              |                          |
| 2.                                   | If $y = at^2 + 2bt + c$ and                                                                                                                                                                       | $t = ax^2 + 2bx + c$ , then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{d^3y}{dx^3}$ equals                     |                                   |                                           |                              |                          |
|                                      | (A) 24a² (at + b)                                                                                                                                                                                 | (B) 24a (ax + b) <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (C) 24a (at +                                  | b)²                               | (D) 24a <sup>2</sup> (ax + b)             |                              |                          |
| 3.                                   | The complex number $z$ (A) Re (z) $\leq 1$                                                                                                                                                        | $z = x + iy \text{ for which } \log_{1/2} (B) \text{ Im } (z) \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ z-2  > \log_{1/2}$<br>(C) Re(z) > 2          | ,∣z∣, are g<br>I                  | jiven by:<br>(D) Im(z) > 1                |                              |                          |
| 4.                                   | If $g(x) = \frac{2h(x)+ h(x) }{2h(x)- h(x) }$ where $h(x) = \sin x - \sin^n x$ , $n \in \mathbb{R}^+$ , the set of positive real numbers, and                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                                   |                                           |                              |                          |
|                                      | $f(x) = \begin{cases} [g(x)], & x \in \left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right) \\ 3, & x = \frac{\pi}{2} \end{cases}$ where [.] denotes greatest integer function. Then |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                                   |                                           |                              |                          |
|                                      | (A) f(x) is continuous and differentiable at x = $\frac{\pi}{2}$ , when 0 < n < 1                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                                   |                                           |                              |                          |
|                                      | (B) f(x) is continuous and differentiable at x = $\frac{\pi}{2}$ , when n > 1                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                                   |                                           |                              |                          |
|                                      | (C) f(x) is continuous but not differentiable at x = $\frac{\pi}{2}$ , when 0 < n < 1                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                                   |                                           |                              |                          |
|                                      | (D) f(x) is continuous but not differentiable at x = $\frac{\pi}{2}$ , when n > 1                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                                   |                                           |                              |                          |
| 5.                                   | For the series $S = 1 +$<br>(A) 7 <sup>th</sup> term is 16                                                                                                                                        | $\frac{1}{(1+3)} (1+2)^2 + \frac{1}{(1+3+3)^2} + \frac{1}{($ | - 5) (1 + 2 + 3)<br>(B) 7 <sup>th</sup> term i | $^{2} + \frac{1}{(1+3+)}$<br>s 18 | (1 + 2 + 3) (1 + 2 + 3                    | + 4) <sup>2</sup> +          |                          |
|                                      | (C) sum of first 10 <sup>th</sup> ter                                                                                                                                                             | rms is $\frac{505}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (D) sum of fi                                  | rst 10 <sup>th</sup> ter          | m is $\frac{405}{4}$                      |                              |                          |
| 6.                                   | Let $f(x) = \frac{1}{1-x}$ , $g(x) = f(x)$                                                                                                                                                        | ofofofofofof(x) and h(x) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : tan⁻¹ (g(−x² −                               | x)), then fir                     | $hd \lim_{n\to\infty} \sum_{r=1}^n h(r).$ |                              |                          |
| 7.                                   | Prove that in the curve coordinates of the point                                                                                                                                                  | $y = a \ell n (x^2 - a^2)$ , sum of of contact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f the tangent ar                               | nd subtang                        | ent varies as the p                       | oroduct                      | of the                   |
| 8.                                   | If the equation $a_0 x^n$ prove that the equation                                                                                                                                                 | +a <sub>1</sub> x <sup>n-1</sup> ++a <sub>n-1</sub> x =<br>n na <sub>n</sub> x <sup>n-1</sup> +(n-1)a <sub>1</sub> x <sup>n-2</sup> +·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0, (where n is<br>+a <sub>n-1</sub> = 0        | natural n<br>also has a           | umber) has a pos<br>a positive root sm    | sitive ro<br>aller th        | oot α,<br>ian α.         |

**CLICK HERE** 

**>>** 

## **Answers Key**

1. (B) 2. (D) 3. (C) 4. (B) 5. (A)(C) 6.  $\frac{\pi}{4}$ 

Get More Learning Materials Here : 📕



